BOMA International's Asseł Management Series:

Measuring Financial Rełurns

BOMA International's Asset Management Series:

Case Study

Leverage

Lever = simple machine used to gain mechanical advantage

Load Arm
Effort Arm

Fulcrum

Leverage

Moving the fulcrum changes the mechanical advantage

Leverage in CRE

Use of various financial instruments or borrowed capital to increase an investment's potential return

Unleveraged CRE

Without leverage, the investor does not achieve a "mechanical advantage"

| $\$ 1$ |
| :---: | :---: |
| million |\quad| \$1 |
| :---: |
| million |

Load Arm
Effort Arm

Fulcrum

Leverage Works When

The cost of debt financing is less than
the unleveraged returns
a property is expected to generate

As an Example

Assume an investor has \$1 million to invest

- With 50\% leverage, \$1 MM $\boldsymbol{\rightarrow}$ \$2 MM
- With 75% leverage, $\$ 1 \mathrm{MM} \rightarrow \$ 4 \mathrm{MM}$

As an Example

Assume an investor has \$1 million to invest

- With 50% leverage, $\$ 1 \mathrm{MM} \rightarrow \$ 2 \mathrm{MM}$
- With 75% leverage, $\$ 1 \mathrm{MM} \rightarrow \$ 4 \mathrm{MM}$

What happens if these investments

 appreciate by 10% ?Measuring Financial Returns

With 50\% Leverage

20\% Leveraged ROI

$\$ 2$ million $\times 10 \%$ return $=\$ 200,000$
$\mathbf{\$ 2 0 0}, 000 /$ \$ 1 million initial investment $=20 \%$ ROI

With 75\% Leverage

40\% Leveraged ROI

$\$ 4$ million $\times 10 \%$ return $=\$ 400,000$
$\$ 400,000 / \$ 1$ million initial investment $=40 \% \mathrm{RO}$

Compare | Without Leverage

10\% Unleveraged ROI

$\$ 1$ million $\times 10 \%$ return $=\$ 100,000$
$\$ 100,000 / \$ 1$ million initial investment $=10 \% \mathrm{ROI}$

Leveraged v. Unleveraged

Investor's Contribution	Leverage	Return on Investment $(\%)$	Return on Investment $(\$)$
$\$ 1,000,000$	None	10%	$\$ 100,000$
$\$ 1,000,000$	50%	20%	$\$ 200,000$
$\$ 1,000,000$	75%	40%	$\$ 400,000$

What About Costs of Borrowing?

Borrowing Costs for Borrower

 Mortgage payments Loan origination costs Closing costs Transaction fees Pre-payment penalties Loan termination costs
Impact of Financing

Investor's Contribution	Leverage	5% Interest	Return on Investment $(\%)$	Return on Investment (\$)
$\$ 1,000,000$	None	None	10%	$\$ 100,000$
$\$ 1,000,000$	50%	$\$ 50,000$ Based upon $\$ 1 M M$ borrowed	15% $20 \%-5 \%=15 \%$	$\$ 150,000$ $\$ 200 \mathrm{~K}-\$ 50 \mathrm{~K}=\$ 150 \mathrm{~K}$
$\$ 1,000,000$	75%	$\$ 150,000$ Based upon $\$ 3 \mathrm{MM}$ borrowed	$\mathbf{3 0 \% - 5 \% = 2 5 \%}$	$\mathbf{2 5 0} \mathbf{\$ 3 0 0 \mathrm { K } - \$ 5 0 \mathrm { K } = \$ 2 5 0 \mathrm { K }}$

Can You Have Too Much Leverage?

Risky for Lender

What if property value declines?
What if a major tenant moves out?
What's the risk if the borrower does not have much "skin in the game?"

What if the Property Loses Value?

Investor's Contribution	Leverage	Return on Investment $(\%)$	Return on Investment $(\$)$
$\$ 1,000,000$	None	-10%	$-\$ 100,000$
$\$ 1,000,000$	50%	-20%	$-\$ 200,000$
$\$ 1,000,000$	75%	-40%	$-\$ 400,000$

Mitigating Risk

Core

- Lenders might be willing to allow a higher amount of
Core+ leverage

Value Add
Opportunistic

- Lenders are likely to require more equity from investors

Common Financial Ratios

- Debt coverage ratio
- Loan-to-value ratio
- Break even ratio
- Debt ratio
- Debt-to-equity ratio
- Equity ratio
- Interest coverage ratio

Debt Coverage Ratio (DCR)

Measures the degree to which the property's projected Net Operating Income (NOI) will support payment of the property's debt service obligations

Debł Coverage Ratio (DCR)

Net Operating Income Total Debt Service

Debł Coverage Ratio (DCR)

$\frac{\$ 200,000}{\$ 130,000}=1.5384$ $\$ 130,000$

$$
1.54 x
$$

DCR: What Does it Mean?

DCR > 1.0

Sufficient cash flow to meet debt service

$D C R<1.0$

Insufficient cash flow to meet debt service

Many lenders require DCR of 1.20 x to 1.40 x or contribution into Debt Service Reserve Account

Loan-to-Value Ratio (LTV)

Measures ratio between loan amount and assessed value of property

Loan-to-Value Ratio (LTV)

Loan Amount

Assessed Value of Property

Loan-to-Value Ratio (LTV)

$$
\frac{\$ 750,000}{\$ 100 n 0 n 0}=75 \%
$$

Higher LTV = more risk for lender
Riskier investment = higher interest rate charged to borrower

Combined Loan-to-Value Ratio (LTV)

Combined Value (All Loans)
Assessed Value of Property
Includes all mortgage loans associated with the property

Breakeven Ratio (BER)

Measures the percentage of the property that needs to be leased in order to cover operating expenses and debt service

Breakeven Ratio (BER)

Annual OEs + Annual Debt Service

Gross Potential Rental Income

Calculating Breakeven Ratio

Gross Potential Rent

Theoretical income a property would generate if 100% leased
"Grossed Up" Operating Expenses Theoretical expenses a property would generate if 100% leased/occupied
(sometimes listed in lease as 95\%)

"Grossing Up" OEs

Fixed Expenses (No Change Needed) Window cleaning | Roof repairs Fire alarm/sprinkler monitoring/repair Elevator R\&M | Management salaries

Variable Expenses Tied to Occupancy Janitorial | Management fees | Utilities Trash removal

"Grossing Up" OEs

Variable Expenses

Potentially Tied to Occupancy

 (When building is largely/entirely unoccupied) Snow removal | Maintenance salaries Maintenance supplies
Think of Breakeven Ratio as:

Annual "Grossed Up" OEs + Annual Debt Service

Gross Potential Rental Income

Leased v. Occupied

"Leased"
Leased to tenant
Tenant may/may not be occupying space Tenant may/may not be paying
"Occupied"
Leased to tenant
Tenant occupying space
Tenant may/may not be paying

Leased v. Occupied

What is the impact of "leased" and "occupied" on

Gross rent potential

"Grossed up" operating expenses

Debł Ratio (D/R)

Compares property's debt

(including all loans, both long-term and short-term) to its total assets

Debł Ratio (D/R)

Total Debt
 Total Assets

Higher debt ratio (meaning property is more leveraged) = higher risk for lender

Debt-to-Equity Ratio (D/E)

Compares property's debts against its equity

Measures how much debt company is using - relative to investor's equity

Debt-to-Equity Ratio (D/E)

Total Debt Liabilities Equity

Higher D/E ratio means property is using more debt = higher risk for lender

Equity Ratio (E/R)

Compares property's equity against its total assets

Measures degree to which property is financed by stockholders/owners (as opposed to creditors)

Equity Ratio (E/R)

Total Equity
 Total Assets

Higher E/R means property is less leveraged
 = lower risk for lender

Interest Coverage Ratio

Compares NOI to interest expenses

Measures investor's ability to pay interest

 expenses on outstanding debt
Interest Coverage Ratio

Net Operating Income

Interest Expenses

Higher E/R = lower risk for lender

Leveraged Return on Investment

Measures efficiency of an investment or to compare various investments

Measures financial return relative to its cost

Adding leverage can dramatically increase (or decrease) financial return

Leveraged Return on Investment

Gain on Investment

Cost of Investment (Leveraged)

Leveraged Return on Investment Example

Investor purchased property for \$1 MM (unleveraged) \& sold for \$1.2 MM

$$
\frac{\$ 200,000}{\$ 1,000,000}=20 \%
$$

Leveraged Return on Investment Example

Investor purchased property for \$1 MM (financing \$500K) \& sold for \$1.2 MM

\$200,000
$\frac{\$ 500,000}{\$ 20 \%}$
(not including financing costs)

Leveraged IRR

Measures financial attractiveness of a project or investment

The interest rate at which the NPV of a cash flow (positive and negative) $=0$

Leveraged IRR

- Higher IRR = more desirable investment
- Good for ranking various projects
- When calculating leveraged IRR, formula changes:
- Initial cash flow = cash used at settlement (not including any leverage)
- Individual cash flows are net of interest expenses
- Final cash flow will include paying off loan balance

Impact of Leverage on IRR

- Investor purchased property for \$1 MM (unleveraged)
- Property generated $\$ 100 \mathrm{~K}$ annual cash flow
- Sold in Year 5 for \$1.2 MM

Impact of Leverage on IRR

Period	Cash Flow
0	$-\$ 1,000,000$
1	$\$ 100,000$
2	$\$ 100,000$
3	$\$ 100,000$
4	$\$ 100,000$
5	$\$ 1,300,000$

Unleveraged IRR = 13.07\%

Impact of Leverage on IRR

- Investor purchased property for \$1 MM (\$500K financed) Property generated \$100K annual cash flow
- Sold in Year 5 for \$1.2 MM

Impact of Leverage on IRR

Period	Cash Flow	Notes
0	-\$500,000	\$1 million purchase price less the \$500,000 mortgage
1	\$90,000	\$100,000 annual cash flow less \$10,000 interest payment
2	\$90,000	\$100,000 annual cash flow less \$ 10,000 interest payment
3	\$90,000	\$100,000 annual cash flow less \$ 10,000 interest payment
4	\$90,000	\$100,000 annual cash flow less \$10,000 interest payment
5	\$790,000	Total includes three components: - $\$ 100,000$ annual cash flow less $\$ 10,000$ interest payment - $\$ 1.2$ million sale price of the asset - $\$ 500,000$ balloon payment to pay off the loan

Leveraged IRR = 23.05\%

